

2018 Long-Term Stewardship Conference

A SURVEY OF SOIL MORPHOLOGY AT FOUR UMTRCA SITES

WITH IMPLICATIONS TO LONG TERM HYDROLOGIC PERFORMANCE

Morgan M. Williams

University of California, Berkeley

Track 1: Advancing current LTS practices at mission and non-mission sites within the Department Session 2.3 – Understanding the Post-Closure Changes of Engineered Disposal Cell Covers

SOILS ARE OPEN AND DYNAMIC SYSTEMS

CONDITIONAL MORPHOLOGY EMERGES

WHAT DOES THIS MEAN FOR ENGINEERED SOILS THAT WERE

DESIGNED TO DEPEND M DECLIL ATED TASKS OVER TIME?

TIME = 0

TIME = X

SITE INVESTIGATIONS

MUDICIPATUO METARICIONE S

- SOITUS PARTIFOTH REBAULIC (CONTINUE) (IRANDE) ab)
- RSJOJEMOKRYTHORO ONIV
- SET PUDE UN BITATS IN, WY
- LAKEWIEW OR
- SOIL BIOLOGY (NEMATODES, BACTERIA...)
- **ANOMALIES** (CONSTRUCTION RELICS...)

FALLS CITY, TEXAS

- Relatively even soil morphology in radon barrier
- Some anomalies with rooting depth and density

SHIRLEY BASIN, WYOMING

- Relatively even morphology in radon barrier
- Some anomalies with rooting depth and density
- Anomalies in sandy overburden thickness and composition
- Considerable anomalies in radon barrier construction morphology

BLUEWATER, NEW MEXICO

- Emergence of impact gradients
- Surface feature(s) influence soil morphology of radon barrier
- Rock armor preferentially collects nutrient rich debris

HOW DOES OBSERVED SOIL MORPHOLOGY INFLUENCE HYDRAULIC CONDUCTIVITY?

POSSIBLE PREDICTORS FOR HYDRAULIC CONDUCTIVITY

ROOT MORPHOLOGY (point conversion; Lin, 1999)

Root Morphology Impact Index (Lin, 1999)

PED MORPHOLOGY (point conversion; Lin, 1999)

Ped Morphology Impact Index (Lin, 1999)

BLUEWATER, NEW MEXICO

- Hydraulic conductivity is most controlled by SOIL PED > PLANT ROOTS > SOIL BIOTA (byproduct of)
- Ants and grasses increase soil structure the most (thus Ksat)

KEY TAKEAWAYS

- Planted and deeper barrier sites are more even
- Unplanted and shallower barrier sites are more uneven
- Soil morphology is dependent on surface feature
- Gradients of impact exist at Bluewater and Lakeview
- Hydraulic conductivity (at Bluewater) is most controlled by the development of soil aggregate morphology

COLLABORATORS

Dr. Bill Albright
Desert Research Institute

Dr. Mark Fuhrmann Nuclear Regulatory Commission

Dr. Jody Waugh Navarro / DOE-LM Dr. Craig Benson University of Virginia

Dr. Bill Likos University of Wisconsin, Madison

Dr. Xiaodong Wang University of Wisconsin, Madison